Hàm số \(y = \dfrac{{x - 1}}{{x - m}}\) nghịch biến trên khoảng \(\left( { - \infty ;2} \right)\) khi và chỉ khi:
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiTXD: \(D = R\backslash \left\{ m \right\}\)
Ta có \(y' = \dfrac{{ - m + 1}}{{{{\left( {x - m} \right)}^2}}}\)
Từ yêu cầu đề bài suy ra: \(\left\{ \begin{array}{l}y' < 0\\m \notin \left( { - \infty ;2} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - m + 1 < 0\\m \ge 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 1\\m \ge 2\end{array} \right. \Leftrightarrow m \ge 2\)
Chọn B
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9