Hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {{x^2} - 1} \right)\left( {{x^2} - 4} \right)\left( {{x^2} + x} \right),{\mkern 1mu} {\mkern 1mu} x \in \mathbb{R}\). Hỏi hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực trị?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có:
\(\begin{array}{l}f'\left( x \right) = 0 \Leftrightarrow \left( {{x^2} - 1} \right)\left( {{x^2} - 4} \right)\left( {{x^2} + x} \right) = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} - 1 = 0}\\{{x^2} - 4 = 0}\\{{x^2} + x = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = {\rm{\;}} \pm 1}\\{x = {\rm{\;}} \pm 2}\\{x = 0}\\{x = {\rm{\;}} - 1}\end{array}} \right.\end{array}\)
Trong đó \(x = 1,{\mkern 1mu} {\mkern 1mu} x = 0,{\mkern 1mu} {\mkern 1mu} x = {\rm{\;}} \pm 2\) là nghiệm đơn, \(x = {\rm{\;}} - 1\) là nghiệm bội 2.
Vậy hàm số đã cho có 4 điểm cực trị.
Chọn D.
Đề thi giữa HK1 môn Toán 12 năm 2021-2022
Trường THPT Phan Bội Châu