Phương trình \({{\log }_{2}}(-{{x}^{2}}-3x-m+10)=3\) có 2 nghiệm trái dấu khi và chỉ khi:
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiĐiều kiện \(-{{x}^{2}}-3x-m+10>0\Leftrightarrow {{x}^{2}}+3x+10-m<0\,\,\left( 1 \right).\)
Phương trình đã cho tương đương với phương trình \(-{{x}^{2}}-3x-m+10=8\Leftrightarrow {{x}^{2}}+3x+m-2=0\,\,\left( 2 \right).\)
Để phương trình \(\left( 2 \right)\) có hai nghiệm trái dấu thì \(m-2<0\Leftrightarrow m<2.\) Thay \({{x}^{2}}+3x+m-2=0\) vào \(\left( 1 \right)\) ta nhận được \(0>{{x}^{2}}+3x+10-m={{x}^{2}}+3x+m-2+12-2m=12-2m\Leftrightarrow 6>m.\)
Vậy với \(2>m\) thỏa mãn yêu cầu bài toán.
Chọn đáp án B.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi HK1 môn Toán 12 năm 2022-2023
Trường THPT Hùng Vương
26/11/2024
707 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9