Số các giá trị nguyên của \(m\) để hàm số \(y = {x^3} - 3m{x^2} - \left( {12m - 15} \right)x + 7\) đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\) là
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiTập xác định: \(D = \left( { - \infty ; + \infty } \right)\). \(y' = 3{x^2} - 6mx - \left( {12m - 15} \right)\).
Ycbt \( \Leftrightarrow {\Delta _{y'}} \le 0\)\( \Leftrightarrow {m^2} + 4m - 5 \le 0 \Leftrightarrow - 5 \le m \le 1\).
Do \(m\) nguyên nên \(m\) có \(7\) giá trị là \( - 5; - 4; - 3; - 2; - 1;0;1\).
Chọn D.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9