Tìm giá trị lớn nhất M của hàm số \(f\left( x \right) = \sin x - \sqrt 3 {\mathop{\rm cosx}\nolimits}\) trên khoảng \(\left( {0;\pi } \right).\)
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo sai\(f'\left( x \right) = \cos x + \sqrt 3 \sin x,f'\left( x \right) = 0\)
\(\Leftrightarrow x = - \frac{\pi }{6} + k\pi \left( {k \in } \right)\)
Vì \(x \in \left( {0;\pi } \right)\) nên \(x = \frac{5\pi}{6}\)
Vậy, Hàm số đạt giá trị lớn nhất của hàm số là \(f\left( {\frac{{5\pi }}{6}} \right) = 2.\)
Chọn A
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi giữa HK1 môn Toán 12 năm 2022-2023
Trường THPT Thăng Long
26/11/2024
123 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9