Tính tích phân \(I = \int\limits_1^e {x\ln x\,dx} \).
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiĐặt \(\left\{ \begin{array}{l}u = \ln x\\dv = xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{x}dx\\v = \dfrac{{{x^2}}}{2}\end{array} \right.\)
Khi đó ta có: \(I = \int\limits_1^e {x\ln x\,dx} \)
\(= \left( {\dfrac{{{x^2}}}{2}\ln x} \right)\left| \begin{array}{l}^e\\_1\end{array} \right. - \int\limits_1^e {\dfrac{x}{2}} \,dx \)
\(= \dfrac{{{e^2}}}{2} - \left( {\dfrac{{{x^2}}}{4}} \right)\left| \begin{array}{l}^e\\_1\end{array} \right. \)
\(= \dfrac{{{e^2}}}{2} - \left( {\dfrac{{{e^2}}}{4} - \dfrac{1}{4}} \right) = I = \dfrac{{{e^2} + 1}}{4}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9