Biết đồ thị hàm số \(y = {x^4} - 2m{x^2} + 1\) có ba điểm cực trị \(A\left( {0;1} \right),\,\,B,\,C\). Các giá trị của tham số m để \(BC = 4\) là:
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo sai\(y = {x^4} - 2m{x^2} + 1 \Rightarrow y' = 4{x^3} - 4mx,\,\,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = m\end{array} \right.\)
Để đồ thị hàm số có 3 điểm cực trị thì \(m > 0\). Khi đó, tọa độ 3 điểm cực trị là:
\(A\left( {0;1} \right),\,\,B\left( { - \sqrt m ;1 - {m^2}} \right),\,C\left( {\sqrt m ;1 - {m^2}} \right)\)
\( \Rightarrow BC = \sqrt {{{\left( {2\sqrt m } \right)}^2} + {0^2}} = 2\sqrt m = 4 \Rightarrow \sqrt m = 2 \Leftrightarrow m = 4\).
Chọn: C
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9