Biết rằng khi khai triển nhị thức Niutơn \({\left( {\sqrt x + \frac{1}{{2\sqrt[4]{x}}}} \right)^n} = {a_0}.\sqrt {{x^n}} + {a_1}.\sqrt {{x^{n - 1}}} .\frac{1}{{\sqrt[4]{x}}} + {a_2}.{\sqrt x ^{n - 2}}.{\left( {\frac{1}{{\sqrt[4]{x}}}} \right)^2} + {a_3}.{\sqrt x ^{n - 3}}.{\left( {\frac{1}{{\sqrt[4]{x}}}} \right)^3}...\)(với n là số nguyên lớn hơn 1) thì ba số \({a_0},{a_1},{a_2}\) theo thứ tự lập thành một cấp số cộng. Hỏi trong khai triển trên, có bao nhiêu số hạng mà lũy thừa của x là một số nguyên.
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo sai
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG môn Toán năm 2018
Trường Chuyên Hùng Vương Gia Lai
14/11/2024
3 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9