Cần sản xuất một vỏ hộp sữa hình trụ có thể tích \(V\) cho trước. Để tiết kiệm vật liệu nhất thì bán kính đáy phải bằng
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTa có: \(V = \pi {r^2}h \Leftrightarrow h = \dfrac{V}{{\pi {r^2}}}\)
Diện tích vật liệu để làm vỏ hộp là: \({S_{tp}} = 2\pi {r^2} + 2\pi rh = 2\pi {r^2} + 2\pi r.\dfrac{V}{{\pi {r^2}}} = 2\pi {r^2} + \dfrac{{2V}}{r} = f\left( r \right)\), \(r > 0\)
Ta có : \(f'\left( r \right) = 4\pi r - \dfrac{{2V}}{{{r^2}}},\,\,f'\left( r \right) = 0 \Leftrightarrow {r^3} = \dfrac{V}{{2\pi }} \Leftrightarrow r = \sqrt[3]{{\dfrac{V}{{2\pi }}}}\)
Bảng biến thiên:
Vậy, để tiết kiệm vật liệu nhất thì bán kính đáy phải bằng \(\sqrt[3]{{\dfrac{V}{{2\pi }}}}\).
Chọn A
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9