Cho các hàm số \(f(x), g(x)\) liên tục trên \(\left[ {0;1} \right],\) thỏa \(m.f\left( x \right) + n.f\left( {1 - x} \right) = g\left( x \right)\) với \(m, n\) là số thực khác 0 và \(\int\limits_0^1 {f\left( x \right){\rm{d}}x}  = \int\limits_0^1 {g\left( x \right){\rm{d}}x}  = 1.\) Tính \(m+n\)

Suy nghĩ trả lời câu hỏi trước khi xem đáp án

ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9