Cho các phương trình sau: \({\left( {x - 1} \right)^2} + {y^2} + {z^2} = 1;\) \({x^2} + {\left( {2y - 1} \right)^2} + {z^2} = 4;\)
\({x^2} + {y^2} + {z^2} + 1 = 0;\) \({\left( {2x + 1} \right)^2} + {\left( {2y - 1} \right)^2} + 4{z^2} = 16.\)
Số phương trình là phương trình mặt cầu là:
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTa có: \({\left( {2x + 1} \right)^2} + {\left( {2y - 1} \right)^2} + 4{z^2} = 16\)
\(\Leftrightarrow {\left( {x + \dfrac{1}{2}} \right)^2} + {\left( {y - \dfrac{1}{2}} \right)^2} + {z^2} = 4\)
\({\left( {x - 1} \right)^2} + {y^2} + {z^2} = 1\) là phương trình của một mặt cầu.
Lựa chọn đáp án A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9