Cho hai số thực dương a, b thỏa mãn \({\log _2}a + {\log _9}b = 4\) và \({\log _2}{a^3} + {\log _3}b = 11.\) Giá trị 28a - b - 2021 bằng
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTa có:
\(\left\{ \begin{array}{l} {\log _2}a + {\log _9}b = 4\\ {\log _2}{a^3} + {\log _3}b = 11 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2{\log _2}a + {\log _3}b = 8\\ 3{\log _2}a + {\log _3}b = 11 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {\log _2}a = 3\\ {\log _3}b = 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = 8\\ b = 9 \end{array} \right..\)
\(\Rightarrow 28a - b - 2021 = 28.8 - 9 - 2021 = - 1806.\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Thái Nguyên
14/11/2024
32 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9