Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ 0;\frac{\pi }{4} \right]\) thỏa mãn \(f\left( 0 \right)=0, \int\limits_{\text{0}}^{\frac{\pi }{\text{4}}}{{{\left[ {f}'\left( x \right) \right]}^{2}}\text{d}x}=2\) và \(\int\limits_{\text{0}}^{\frac{\pi }{\text{4}}}{\sin 2x.f\left( x \right)\text{d}x}=\frac{1}{2}.\) Tích phân \(\int\limits_{\text{0}}^{\frac{\pi }{\text{4}}}{f\left( x \right)\text{d}x}\) bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(u=f\left( x \right)\Rightarrow \text{d}u={f}'\left( x \right)\text{d}x,\text{d}v=\sin 2x\text{d}x\Rightarrow v=-\frac{1}{2}\cos 2x.\)
Do đó: \(\frac{1}{2}=\int\limits_{\text{0}}^{\frac{\pi }{\text{4}}}{\sin 2x.f\left( x \right)\text{d}x}=\left. \left( -\frac{f\left( x \right)}{2}\cos 2x \right) \right|_{0}^{\frac{\pi }{4}}+\int\limits_{\text{0}}^{\frac{\pi }{\text{4}}}{\frac{1}{2}\cos 2x.{f}'\left( x \right)\text{d}x}\)
\(\Rightarrow \int\limits_{\text{0}}^{\frac{\pi }{\text{4}}}{\left( \cos 2x \right).{f}'\left( x \right)\text{d}x}=1\Rightarrow \int\limits_{\text{0}}^{\frac{\pi }{\text{4}}}{\left( 2\cos 2x \right).{f}'\left( x \right)\text{d}x}=2\Rightarrow {f}'\left( x \right)=2\cos 2x.\)
\(\Rightarrow f\left( x \right)=\sin 2x+C.\) Mà \(f\left( 0 \right)=0\) nên \(C=0\Rightarrow f\left( x \right)=\sin 2x.\)
\(\int\limits_{\text{0}}^{\frac{\pi }{\text{4}}}{f\left( x \right)\text{d}x}=\int\limits_{\text{0}}^{\frac{\pi }{\text{4}}}{\sin 2x\text{d}x}=\left. \left( -\frac{1}{2}\cos 2x \right) \right|_{0}^{\frac{\pi }{4}}=\frac{1}{2}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Huỳnh Thúc Kháng