Cho hàm số \(f\left( x \right)\) xác định và có đạo hàm \(f'\left( x \right)\) liên tục trên đoạn \(\left[ 1;3 \right]\) và \(f\left( x \right)\ne 0\) với mọi \(x\in \left[ 1;3 \right]\), đồng thời \(f'\left( x \right)+{{\left( 1+f\left( x \right) \right)}^{2}}={{\left[ {{\left( f\left( x \right) \right)}^{2}}\left( x-1 \right) \right]}^{2}}\) và \(f\left( 1 \right)=-1.\) Biết rằng \(\int\limits_{1}^{3}{f\left( x \right)dx}=a\ln 3+b,a,b\in \mathbb{Z}.\) Tính tổng \(S=a+{{b}^{2}}.\)
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(f'(x){{(1+f(x))}^{2}}={{\text{ }\!\![\!\!\text{ }{{(f(x))}^{2}}(x-1)\text{ }\!\!]\!\!\text{ }}^{2}}<=>\frac{f'(x){{(1+f(x))}^{2}}}{{{f}^{4}}(x)}={{(x-1)}^{2.}}\)
Lấy nguyên hàm 2 vế ta được \(\int{\frac{f'(x){{(1+f(x))}^{2}}}{{{f}^{4}}(x)}dx=\int{{{(x-1)}^{2}}dx}}\)
\(\begin{array}{l} < = > \int {\frac{{(1 + 2f(x) + {f^2}(x))f'(x)}}{{{f^4}(x)}}dx} = \int {{{(x - 1)}^2}dx} \\ < = > \int {\left( {\frac{1}{{{f^4}(x)}} + 2\frac{1}{{{f^3}(x)}} + \frac{1}{{{f^2}(x)}}} \right)} d(f(x)) = \frac{{{{(x - 1)}^3}}}{3} + C\\ < = > - \frac{1}{{3{f^3}(x)}} - \frac{1}{{{f^2}(x)}} - \frac{1}{{f(x)}} = \frac{{{{(x - 1)}^3}}}{3} + C\\ < = > - \frac{{1 + 3f(x) + 3{f^2}(x)}}{{3{f^3}(x)}} = \frac{{{{(x - 1)}^3}}}{3} + C \end{array}\)
Mà \(f(1)=-1=>-\frac{1-3+3}{-3}=C=>C=\frac{1}{3}\)
\(\begin{array}{l} = > - \frac{{1 + 3f(x) + 3{f^2}(x)}}{{3{f^3}(x)}} = \frac{{{{(x - 1)}^3}}}{3} + \frac{1}{3}\\ < = > \frac{{1 + 3f(x) + 3{f^2}(x)}}{{3{f^3}(x)}} + \frac{1}{3} = - \frac{{{{(x - 1)}^3}}}{3}\\ < = > \frac{{{{(1 + f(x))}^3}}}{{{f^3}(x)}} = - {(x - 1)^3}\\ < = > {\left( {1 + \frac{1}{{f(x)}}} \right)^3} = {(1 - x)^3}\\ < = > f(x) = \frac{{ - 1}}{x}. \end{array}\)
Vậy \(\int\limits_{1}^{3}{f(x)dx}=\int\limits_{1}^{3}{\frac{-1}{x}dx}=-\ln |x|\left| \begin{align} & 3 \\ & 1 \\ \end{align} \right.=-\ln 3\). Suy ra a=-1;b=0 hay a+b=-1.
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Thủ Khoa Huân lần 2