Cho hàm số \(y = - {x^3} - m{x^2} + \left( {4m + 9} \right)x + 5\), với m là tham số. Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên R?
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTa có: \(y' = - 3{x^2} - 2mx + 4m + 9\).
Hàm số nghịch biến trên \(\left( { - \infty ; + \infty } \right) \Leftrightarrow y' \le 0,\forall x \in \left( { - \infty ; + \infty } \right)\).
\( \Leftrightarrow \left\{ \begin{array}{l} - 3 < 0\\ \Delta ' = {\left( { - m} \right)^2} - \left( { - 3} \right).\left( {4m + 9} \right) \le 0 \end{array} \right.\)
\( \Leftrightarrow {m^2} + 12m + 27 \le 0 \Leftrightarrow m \in \left[ { - 9; - 3} \right]\)
Suy ra số giá trị nguyên của m để hàm số nghịch biến trên R là 7.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9