Cho hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {a;b} \right)\). Mệnh đề nào sau đây sai?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có : Hàm số đồng biến trên \(\left( {a;b} \right) \Leftrightarrow f'\left( x \right) \ge 0\,\,\forall x \in \left( {a;b} \right)\) và bằng 0 tại hữu hạn điểm.
+) Đáp án B : \(y' = - f'\left( x \right) \Rightarrow y' < 0\,\,\forall x \in \left( {a;b} \right) \Rightarrow \) Hàm số nghịch biến trên \(\left( {a;b} \right)\). Đáp án B đúng.
+) Đáp án C : \(y' = f'\left( x \right) \Rightarrow y' \ge 0\,\,\forall x \in \left( {a;b} \right) \Rightarrow \) Hàm số đồng biến trên \(\left( {a;b} \right)\). Đáp án C đúng.
+) Đáp án D : \(y' = - f'\left( x \right) \Rightarrow y' < 0\,\,\forall x \in \left( {a;b} \right) \Rightarrow \) Hàm số nghịch biến trên \(\left( {a;b} \right)\). Đáp án D đúng.
Chọn A.