Cho hàm số \(y=f\left( x \right)\) liên tục trên \(R\). Hàm số \(y=f'\left( x \right)\) có đồ thị như hình vẽ. Hàm số \(g\left( x \right)=f\left( {{x}^{2}} \right)+\frac{2020-1010{{x}^{2}}}{1009}\) có bao nhiêu cực trị?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(g'\left( x \right)=2x.f'\left( {{x}^{2}} \right)-\frac{2020}{1009}x\).
\(g'\left( x \right)=0\Leftrightarrow 2x(f'\left( {{x}^{2}} \right)-\frac{1010}{1009})=0\)
Ta có \(1<\frac{1010}{1009}<2\) và dựa vào đồ thị của hàm số \(y=f'\left( x \right)\), ta suy ra đồ thị của hàm số \(g'\left( x \right)=0\) có nghiệm:
\(\Leftrightarrow \left[ \begin{array}{l} x = 0\\ {x^2} = a < 0\\ {x^2} = b > 0\\ {x^2} = c > 0\\ {x^2} = d > 0 \end{array} \right.\)
Ta có \(1<\frac{1010}{1009}<2\) và dựa vào đồ thị của hàm số \(y=f'\left( x \right)\), ta suy ra đồ thị của hàm số \(g\left( x \right)\) cắt trục hoành tại 7 cực trị.
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Thanh Đa lần 3