Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của m để phương trình \(f\left( {2 - \sqrt {2x - {x^2}} } \right) = m\) có nghiệm?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét hàm số \(t\left( x \right) = 2 - \sqrt {2x - {x^2}} ,\,\,x \in \left[ {0;2} \right]\), có \(t'\left( x \right) = \dfrac{{x - 1}}{{\sqrt {2x - {x^2}} }};\,\,t'\left( x \right) = 0 \Leftrightarrow x = 1\)
Hàm số \(t\left( x \right)\) liên tục trên \(\left[ {0;2} \right]\) có \(t\left( 0 \right) = t\left( 2 \right) = 2,\,\,t\left( 1 \right) = 1 \Rightarrow \mathop {\min }\limits_{\left[ {0;2} \right]} t\left( x \right) = 1,\,\,\mathop {\max }\limits_{\left[ {0;2} \right]} t\left( x \right) = 2\)
\(x \in \left[ {0;2} \right] \Rightarrow t \in \left[ {1;2} \right]\). Khi đó bài toán trở thành có bao nhiêu giá trị nguyên của m để phương trình \(f\left( t \right) = m\) có nghiệm \(t \in \left[ {1;2} \right]\).
Quan sát đồ thị hàm số \(y = f\left( t \right)\) trên đoạn \(\left[ {1;2} \right]\) ta thấy, phương trình \(f\left( t \right) = m\) có nghiệm \( \Leftrightarrow 3 \le m \le 5\)
Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ {3;4;5} \right\}\): có 3 giá trị của m thỏa mãn.
Chọn: C