Cho hàm số \(y={{x}^{4}}-2\left( m+1 \right){{x}^{2}}+{{m}^{2}}\) với \(m\) là tham số thực. Tìm tất cả các giá trị của \(m\) để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác vuông.
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(y'=4{{x}^{3}}-4\left( m+1 \right)x=4x\left( {{x}^{2}}-m-1 \right)\); \(y'=0\Leftrightarrow \left[ \begin{align} & x=0 \\ & {{x}^{2}}=m+1 \\ \end{align} \right.\)
Để hàm số có ba điểm cực trị \(\Leftrightarrow \)\(y'=0\) có ba nghiệm phân biệt \(\Leftrightarrow m+1>0\Leftrightarrow m>-1\).
Suy ra tọa độ các điểm cực trị của đồ thị hàm số là:
\(A\left( 0;{{m}^{2}} \right),\text{ }B\left( \sqrt{m+1};-2m-1 \right)\) và \(C\left( -\sqrt{m+1};-2m-1 \right)\).
Khi đó \(\overrightarrow{AB}=\left( \sqrt{m+1};-2m-1-{{m}^{2}} \right)\) và \(\overrightarrow{AC}=\left( -\sqrt{m+1};-2m-1-{{m}^{2}} \right)\).
Ycbt \( \Leftrightarrow \overrightarrow {AB} .\overrightarrow {AC} = 0 \Leftrightarrow - \left( {m + 1} \right) + {\left( {m + 1} \right)^4} = 0 \Leftrightarrow \left[ \begin{array}{l} m = - 1(L)\\ m = 0(N) \end{array} \right..\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Thăng Long lần 3