Cho hình chóp S.ABC có đáy là tam giác vuông tại B, hai mặt bên SAB và SAC cùng vuông góc với đáy, \(SB=2a, AB=BC=a\). Bán kính của mặt cầu ngoại tiếp hình chóp S.ABC là
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTa có \(\left( {SAB} \right) \bot \left( {ABC} \right)\) và \(\left( {SAC} \right) \bot \left( {ABC} \right)\), mà \(\left( {SAB} \right) \cap \left( {SAC} \right) = SA\).
Suy ra \(SA \bot \left( {ABC} \right).\) Gọi I là trung điểm của SC.
Ta có \(\Delta SAC\) vuông tại A nên \(IS=IA=IC\)
Do \(BC \bot \left( {SAB} \right) \Rightarrow \Delta SBC\) vuông tại B nên \(IS=IB=IC\)
Do đó I là tâm của mặt cầu ngoại tiếp hình chóp S.ABC.
Vì vậy: \(R = \frac{{SC}}{2} = \frac{{\sqrt {S{B^2} + B{C^2}} }}{2} = \frac{{a\sqrt 5 }}{2}.\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9