Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành có diện tích bằng \(2{a^2}\) ,\(AB = a\sqrt 2 ;BC = 2a\). Gọi \(M\) là trung điểm của \(DC\). Hai mặt phẳng \(\left( {SBD} \right)\) và \(\left( {SAM} \right)\) cùng vuông góc với đáy. Khoảng cách từ điểm \(B\) đến mặt phẳng \(\left( {SAM} \right)\) bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(H = AM \cap BD\)
Ta có \(\left\{ \begin{array}{l}\left( {SBD} \right) \bot \left( {ABC} \right)\\\left( {SAM} \right) \bot \left( {ABC} \right)\\\left( {SBD} \right) \cap \left( {SAM} \right) = SH\end{array} \right. \Rightarrow SH \bot \left( {ABC} \right)\)
Vì \(AB//CD\) nên theo định lý Ta-lét ta có
\(\begin{array}{l}\dfrac{{HB}}{{HD}} = \dfrac{{AB}}{{DM}} = 2 \Rightarrow \dfrac{{d\left( {B;\left( {SAM} \right)} \right)}}{{d\left( {D;\left( {SAM} \right)} \right)}} = \dfrac{{HB}}{{HD}} = 2\\ \Rightarrow d\left( {B;\left( {SAM} \right)} \right) = 2d\left( {D;\left( {SAM} \right)} \right)\end{array}\)
Kẻ \(DK \bot AM\)tại \(K.\)
Ta có \(\left\{ \begin{array}{l}DK \bot AM\\DK \bot SH\,\left( {do\,SH \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow DK \bot \left( {SAM} \right)\) tại \(K \Rightarrow d\left( {D;\left( {SAM} \right)} \right) = DK\)
Nên \(d\left( {B;\left( {SAM} \right)} \right) = 2.DK\) .
Vì \(M\) là trung điểm của \(DC\) và \(ABCD\) là hình bình hành có diện tích \(2{a^2}\) nên ta có
\({S_{ADM}} = \dfrac{1}{2}{S_{ADC}} = \dfrac{1}{4}{S_{ABCD}} = \dfrac{{2{a^2}}}{4} = \dfrac{{{a^2}}}{2}\)
Lại có \(CD = AB = a\sqrt 2 \, \Rightarrow DM = \dfrac{{a\sqrt 2 }}{2};AD = BC = 2a\)
Khi đó \({S_{ADM}} = \dfrac{1}{2}AD.DM.\sin \widehat D \Leftrightarrow \dfrac{{{a^2}}}{2} = \dfrac{1}{2}.2a.\dfrac{{a\sqrt 2 }}{2}.\sin \widehat D \Rightarrow \sin \widehat D = \dfrac{{\sqrt 2 }}{2} \Rightarrow \widehat D = {45^o}\)
Do vậy xét trong tam giác \(ADM\) ta có
\(A{M^2} = A{D^2} + D{M^2} - 2AD.DM.\cos {45^o} = 4{a^2} + \dfrac{{{a^2}}}{2} - 2.2a.\dfrac{{a\sqrt 2 }}{2}.\dfrac{{\sqrt 2 }}{2} = \dfrac{{5{a^2}}}{2} \Rightarrow AM = \dfrac{{\sqrt {10} }}{2}a\)
Lại có \({S_{ADM}} = \dfrac{1}{2}DK.AM \Rightarrow \)\(DK = \dfrac{{2{S_{ADM}}}}{{AM}} = \dfrac{{2a}}{{\sqrt {10} }} = \dfrac{{a\sqrt {10} }}{5}\)
Từ đó \(d\left( {B;\left( {SAM} \right)} \right) = 2.DK = \dfrac{{2a\sqrt {10} }}{5}\)
Chọn: C
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Phạm Phú Thứ