Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk % eacqGH9aqpcaaIYaGaamyyaiaacYcacaWGbbGaamiraiabg2da9iaa % dggacaGGSaGaam4uaiaadgeacqGH9aqpcaaIZaGaamyyaaaa!434B! AB = 2a,AD = a,SA = 3a\) và SA vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh CD. Khoảng cách giữa hai đường thẳng SC và BM bằng:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt hệ trục tọa độ như hình vẽ, chọn a = 1. Khi đó ta có:\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaabm % aabaGaaGimaiaacUdacaaIWaGaai4oaiaaicdaaiaawIcacaGLPaaa % caGGSaGaamOqamaabmaabaGaaGOmaiaacUdacaaIWaGaai4oaiaaic % daaiaawIcacaGLPaaacaGGSaGaam4qamaabmaabaGaaGOmaiaacUda % caaIXaGaai4oaiaaicdaaiaawIcacaGLPaaacaGGSaGaamiramaabm % aabaGaaGimaiaacUdacaaIXaGaai4oaiaaicdaaiaawIcacaGLPaaa % caGGSaGaam4uamaabmaabaGaaGimaiaacUdacaaIWaGaai4oaiaaio % daaiaawIcacaGLPaaaaaa!56BC! A\left( {0;0;0} \right),B\left( {2;0;0} \right),C\left( {2;1;0} \right),D\left( {0;1;0} \right),S\left( {0;0;3} \right)\)
M là trung điểm cạnh \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaads % eacqGHshI3caWGnbWaaeWaaeaacaaIXaGaai4oaiaaigdacaGG7aGa % aGimaaGaayjkaiaawMcaaaaa!3FEB! CD \Rightarrow M\left( {1;1;0} \right)\)
Ta có :\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGtbGaam4qaaGaay51GaGaeyypa0ZaaeWaaeaacqGHsislcaaIYaGa % ai4oaiabgkHiTiaaigdacaGG7aGaaG4maaGaayjkaiaawMcaaiaacU % dadaWhcaqaaiaadkeacaWGnbaacaGLxdcacqGH9aqpdaqadaqaaiab % gkHiTiaaigdacaGG7aGaaGymaiaacUdacaaIWaaacaGLOaGaayzkaa % Gaai4oamaaFiaabaGaam4uaiaadkeaaiaawEniaiabg2da9maabmaa % baGaaGOmaiaacUdacaaIWaGaai4oaiabgkHiTiaaiodaaiaawIcaca % GLPaaacqGHshI3daWadaqaamaaFiaabaGaam4uaiaadoeaaiaawEni % aiaacUdadaWhcaqaaiaadkeacaWGnbaacaGLxdcaaiaawUfacaGLDb % aacqGH9aqpdaqadaqaaiabgkHiTiaaiodacaGG7aGaeyOeI0IaaG4m % aiaacUdacqGHsislcaaIZaaacaGLOaGaayzkaaaaaa!6C92! \overrightarrow {SC} = \left( { - 2; - 1;3} \right);\overrightarrow {BM} = \left( { - 1;1;0} \right);\overrightarrow {SB} = \left( {2;0; - 3} \right) \Rightarrow \left[ {\overrightarrow {SC} ;\overrightarrow {BM} } \right] = \left( { - 3; - 3; - 3} \right)\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaabm % aabaGaam4uaiaadoeacaGG7aGaamOqaiaad2eaaiaawIcacaGLPaaa % cqGH9aqpdaWcaaqaamaaemaabaWaamWaaeaadaWhcaqaaiaadofaca % WGdbaacaGLxdcacaGG7aWaa8HaaeaacaWGcbGaamytaaGaay51Gaaa % caGLBbGaayzxaaGaaiOlamaaFiaabaGaam4uaiaadkeaaiaawEniaa % Gaay5bSlaawIa7aaqaamaaemaabaWaamWaaeaadaWhcaqaaiaadofa % caWGdbaacaGLxdcacaGG7aWaa8HaaeaacaWGcbGaamytaaGaay51Ga % aacaGLBbGaayzxaaaacaGLhWUaayjcSdaaaiabg2da9maalaaabaWa % aqWaaeaacqGHsislcaaIZaGaaiOlaiaaikdacqGHsislcaaIZaGaai % OlaiaaicdacqGHRaWkdaqadaqaaiabgkHiTiaaiodaaiaawIcacaGL % PaaacaGGUaWaaeWaaeaacqGHsislcaaIZaaacaGLOaGaayzkaaaaca % GLhWUaayjcSdaabaWaaOaaaeaadaqadaqaaiabgkHiTiaaiodaaiaa % wIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaai % abgkHiTiaaiodaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGc % cqGHRaWkdaqadaqaaiabgkHiTiaaiodaaiaawIcacaGLPaaadaahaa % WcbeqaaiaaikdaaaaabeaaaaGccqGH9aqpdaWcaaqaaiaaiodaaeaa % caaIZaWaaOaaaeaacaaIZaaaleqaaaaakiabg2da9maalaaabaWaaO % aaaeaacaaIZaaaleqaaaGcbaGaaG4maaaaaaa!812E! \Rightarrow d\left( {SC;BM} \right) = \frac{{\left| {\left[ {\overrightarrow {SC} ;\overrightarrow {BM} } \right].\overrightarrow {SB} } \right|}}{{\left| {\left[ {\overrightarrow {SC} ;\overrightarrow {BM} } \right]} \right|}} = \frac{{\left| { - 3.2 - 3.0 + \left( { - 3} \right).\left( { - 3} \right)} \right|}}{{\sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2}} }} = \frac{3}{{3\sqrt 3 }} = \frac{{\sqrt 3 }}{3}\)
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 4