Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA \bot (ABCD)\) và \(SA = a\sqrt 6 .\) Giá trị \(\cos (\widehat {SC,(SAD)})\) bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(CD \bot AD,CD \bot SA \Rightarrow CD \bot \left( {SDA} \right)\).
Do đó góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {SAD} \right)\) bằng góc giữa đường thẳng \(CS\) và đường thẳng \(DS\) hay \(\widehat {CSD}\).
Lại có \(SD = \sqrt {S{A^2} + A{D^2}} = a\sqrt 7 ,SC = \sqrt {S{A^2} + A{C^2}} = 2a\sqrt 2 ,CD = a\) nên áp dụng định lý hàm số cô sin cho tam giác \(SCD\) ta có:
\(\cos \widehat {CSD} = \dfrac{{S{D^2} + S{C^2} - C{D^2}}}{{2SD.SC}} = \dfrac{{7{a^2} + 8{a^2} - {a^2}}}{{2.a\sqrt 7 .2a\sqrt 2 }} = \dfrac{{\sqrt {14} }}{4}\).
Chọn B.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Lương Văn Can