Cho hình nón có đỉnh \(S\), độ dài đường sing bằng \(2a\). Một mặt phẳng qua đỉnh \(S\) cắt hình nón theo một thiết diện, diện tích lớn nhất của thiết diện là
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiChiều cao của hình nón là: \(h = \sqrt {{l^2} - {r^2}} = \sqrt {{{\left( {2a} \right)}^2} - {{\left( {a\sqrt 2 } \right)}^2}} \)\(\,= a\sqrt 2 \)
Thiết diện lớn nhất đi qua S và trục của hình nón có diện tích là:
\(S = \dfrac{1}{2}h.2r = \dfrac{1}{2}a\sqrt 2 .2.a\sqrt 2 = 2{a^2}\)
Chọn A
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Trương Vĩnh Ký
26/11/2024
12 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9