Cho hình nón có tỉ lệ giữa bán kính đáy và đường sinh bằng \(\dfrac{1}{3}\). Hình cầu nội tiếp hình nón này có thể tích bằng V. Thể tích hình nón bằng.
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi r và R lần lượt là bán kính của đường tròn đáy của hình nón và bán kính của mặt cầu nội tiếp hình nón.
Áp dụng định lí Pitago vào tam giác vuông AIC ta có:
\(AI = \sqrt {A{C^2} - I{C^2}} = \sqrt {{l^2} - {r^2}} \)\(\, = \sqrt {{{\left( {3r} \right)}^2} - {r^2}} = 2\sqrt 2 r\)
\(OA = AI - OI = 2\sqrt 2 r - R\)
\(\Delta OAH\) đồng dạng \(\Delta CAI\) (g.g)
\(\begin{array}{l} \Rightarrow \dfrac{{CI}}{{OH}} = \dfrac{{AC}}{{AO}} \Rightarrow \dfrac{r}{R} = \dfrac{{3r}}{{2\sqrt 2 r - R}}\\ \Rightarrow 3R = 2\sqrt 2 r - R \Rightarrow 4R = 2\sqrt 2 r\\ \Rightarrow r = \sqrt 2 R\end{array}\)
Thể tích của mặt cầu nội tiếp hình nón là: \(V = \dfrac{4}{3}\pi {R^3}\)
Thể tích của hình nón là:
\(V' = \dfrac{1}{3}\pi {r^2}.2\sqrt 2 r = \dfrac{1}{3}\pi .2\sqrt 2 .{\left( {\sqrt 2 R} \right)^3} \)\(\,= \dfrac{8}{3}\pi {R^3} = 2V\)
Chọn A