Cho hình trụ có chiều cao bằng 8a. Biết hai điểm A, C lần lượt nằm trên hai đáy thỏa AC = 10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi (O), (O') lần lượt là hai đường tròn đáy. \(A \in \left( O \right),C \in \left( {O'} \right)\).
Dựng AD, CB lần lượt song song với OO'(\(D \in \left( {O'} \right),B \in \left( O \right)\)). Dễ dàng có ABCD là hình chữ nhật.
Do \(AC = 10a,AD = 8a \Rightarrow DC = 6a\).
Gọi H là trung điểm của DC.
\(\left\{ {\begin{array}{*{20}{c}} {O'H \bot DC}\\ {O'H \bot AD} \end{array}} \right. \Rightarrow O'H \bot \left( {ABCD} \right)\).
Ta có \(OO'//\left( {ABCD} \right) \Rightarrow d\left( {OO',AC} \right) = d\left( {OO',\left( {ABCD} \right)} \right) = O'H = 4a\).
\(O'H = 4a,CH = 3a \Rightarrow R = O'C = 5a\).
Vậy thể tích của khối trụ là \(V = \pi {R^2}h = \pi {\left( {5a} \right)^2}8a = 200\pi {a^3}\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Chuyên Lương Văn Tụy