Cho tứ diện ABCD có \(AB,AC,AD\) đôi một vuông góc và \(AB=6a,AC=9a,AD=3a.\) Gọi \(M,N,P\) lần lượt là trọng tâm của các tam giác \(ABC,ACD,ADB.\) Thể tích của khối tứ diện \(AMNP\) bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(I,F,E\) lần lượt là trung điểm của các cạnh \(BC,CD,BD\)
\(\frac{{{V}_{A.MPN}}}{{{V}_{A.IEF}}}=\frac{AM}{AI}.\frac{AP}{AE}.\frac{AN}{AF}=\frac{2}{3}.\frac{2}{3}.\frac{2}{3}=\frac{8}{27}\Rightarrow {{V}_{A.MPN}}=\frac{8}{27}{{V}_{A.IEF}}\left( 1 \right)\)
\(\Delta BIE=\Delta CIF=\Delta EFD\left( c.c.c \right)\Rightarrow {{S}_{IEF}}=\frac{1}{4}{{S}_{BCD}}\Rightarrow {{V}_{A.IEF}}=\frac{1}{4}{{v}_{ABCD}}\left( 2 \right)\)
Từ (1) và (2) \(\Rightarrow {{V}_{A.MPN}}=\frac{2}{27}.{{V}_{ABCD}}\)
Mặt khác \({{V}_{ABCD}}=\frac{1}{6}AB.AC.AD=\frac{1}{6}.6a.9a.3a=27{{a}^{3}}\Rightarrow {{V}_{A.MPN}}=2{{a}^{3}}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Quang Hà lần 3