Có bao nhiêu số phức z thỏa mãn điều kiện \(\left| {z + i\sqrt 5 } \right| + \left| {z - i\sqrt 5 } \right| = 6\), biết z có mô đun bằng \(\sqrt 5 \)?
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiGọi M là điểm biểu diễn số phức \(z\), \({F_1}\) và \({F_2}\) là 2 điểm biểu diễn số phức \({z_1} = i\sqrt 5 ,\,\,{z_2} = - i\sqrt 5 \).
Theo bài ra ta có: \(M{F_1} + M{F_2} = 6 \Rightarrow M\) thuộc Elip \(\left( E \right)\) nhận \({F_1}\) và \({F_2}\) là 2 tiêu điểm.
Lại có \(\left| z \right| = \sqrt 5 \Rightarrow OM = \sqrt 5 \), M thuộc \(\left( E \right) \Rightarrow \) Có 4 điểm \(M\) thỏa mãn yêu cầu bài toán.
Chọn B.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Nguyễn Hữu Huân
26/11/2024
79 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9