Có bao nhiêu số phức z thỏa mãn \(\left| {z - 2 + 3i} \right| = \left| {z + 1 - i} \right|\) và \({\left| z \right|^2} + 2\left( {z + \overline z } \right) = 5\)?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(z = a + bi.\)
Theo bài ra ta có:
\(\begin{array}{l}\,\,\,\,\,\,\,\left| {z - 2 + 3i} \right| = \left| {z + 1 - i} \right|\\ \Leftrightarrow \left| {a + bi - 2 + 3i} \right| = \left| {a + bi + 1 - i} \right|\\ \Leftrightarrow \left| {\left( {a - 2} \right) + \left( {b + 3} \right)i} \right| = \left| {\left( {a + 1} \right) + \left( {b - 1} \right)i} \right|\\ \Leftrightarrow {\left( {a - 2} \right)^2} + {\left( {b + 3} \right)^2} = {\left( {a + 1} \right)^2} + {\left( {b - 1} \right)^2}\\ \Leftrightarrow - 4a + 4 + 6b + 9 = 2a + 1 - 2b + 1\\ \Leftrightarrow 6a - 8b = 11 \Rightarrow b = \frac{{6a - 11}}{8}\end{array}\)
Mặt khác ta có:
\(\begin{array}{l}\,\,\,\,\,\,\,{\left| z \right|^2} + 2\left( {z + \overline z } \right) = 5\\ \Rightarrow {a^2} + {b^2} + 4a = 5\\ \Rightarrow {a^2} + {\left( {\frac{{6a - 11}}{8}} \right)^2} + 4a - 5 = 0\\ \Leftrightarrow \frac{{25}}{{16}}{a^2} + \frac{{31}}{{16}}a - \frac{{199}}{{64}} = 0\end{array}\)
Phương trình trên có 2 nghiệm \(a\) phân biệt. Do đó có 2 số phức \(z\) thỏa mãn yêu cầu bài toán.