Dùng một nguồn dao động có tần số thay đổi được để tạo ra sóng lan truyền trên một sợi dây đàn hồi. Thay đổi tần số của nguồn thì nhận thấy có hai tần số liên tiếp f1 = 14 Hz và f2 = 18 Hz trên dây có sóng dừng. Biết tốc độ truyền sóng trên dây không đổi. Để có sóng dừng trên dây với 2 bụng sóng thì tần số của nguồn dao động là
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiKhi đầu trên của dây gắn với một nhánh của âm thoa dao động với tần số 14Hz thấy trên dây xảy ra sóng dừng với (k1 + 1) bụng sóng thì:
\(l = (2{k_1} + 1)\frac{\lambda }{4} = (2{k_1} + 1).\frac{v}{{4{f_1}}} \Rightarrow {f_1} = \frac{{(2{k_1} + 1)v}}{{4l}} = 14\)
Khi đầu trên gắn với một nhánh của âm thoa dao động với tần số 18 Hz thấy trên dây xảy ra sóng dừng với (k2 + 1) bụng sóng thì:
\(l = (2{k_2} + 1)\frac{{\lambda '}}{4} = (2{k_2} + 1).\frac{v}{{4{f_2}}} \Rightarrow {f_2} = \frac{{(2{k_2} + 1)v}}{{4l}} = 18\)
Vì đây là hai tần số liên tiếp để trên dây có sóng dừng, tức là số bụng là hai số liên tiếp hay: k2 = k1 + 1.
Do đó:
\(\frac{{2{k_2} + 1}}{4}.\frac{v}{l} = 18 \Leftrightarrow \frac{{2{k_1} + 1.v}}{{4l}} + \frac{v}{{2l}} = 18 \Rightarrow \frac{v}{{2l}} = 4\)
Để trên dây có 2 bụng sóng thì:
\(l = (2k + 1).\frac{v}{{4f}} \Rightarrow f = \frac{{(2k + 1)v}}{{4l}} = 3.\frac{v}{{4l}} = 6Hz\)
Chọn C.