Một vật dao động là tổng hợp của hai dao động điều hòa cùng phương, cùng tần số có phương trình lần lượt là \({x_1} = 20\cos \left( {\omega t - \pi } \right)\,\,\left( {cm} \right)\) và \({x_2} = {A_2}\cos \left( {\omega t - \frac{\pi }{3}} \right)\,\,\left( {cm} \right)\). Thay đổi A2 để biên độ dao động tổng hợp có giá trị nhỏ nhất, khi đó lệch pha giữa dao động tổng hợp và dao động thành phần x1 là
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐáp án : B
Ta có giản đồ vecto:
Từ giản đồ vecto, áp dụng định lí hàm cos, ta có:
\(\begin{array}{l}{A^2} = {A_1}^2 + {A_2}^2 + 2{A_1}{A_2}\cos \frac{{2\pi }}{3}\\ \Rightarrow {A^2} = {20^2} + {A_2}^2 - 20{A_2}\end{array}\)
Đặt \(x = {A_2}\), xét hàm số \(f\left( x \right) = {x^2} - 20x + {20^2}\), ta có:
\(f{'_{\left( x \right)}} = 2x - 20\)
Để \({A_{\min }} \Rightarrow {f_{\left( x \right)}}\min \Rightarrow f{'_{\left( x \right)}} = 0 \Rightarrow x = 10 \Rightarrow {A_2} = 10\,\,\left( {cm} \right)\)
Khi đó, \({A_{\min }} = 10\sqrt 3 \,\,\left( {cm} \right)\)
Ta có: \(\cos \varphi = \frac{{{A_1}^2 + {A^2} - {A_2}^2}}{{2A.{A_1}}} = \frac{{\sqrt 3 }}{2} \Rightarrow \varphi = \frac{\pi }{6}\)
Đề thi thử Tốt nghiệp THPT môn Vật lí năm 2023-2024
Trường THPT Nam Từ Liêm