Tìm tất cả các giá trị thực của tham số m để phương trình \(\log _{2}^{2}x+2{{\log }_{2}}x+m=0\) có nghiệm \(x\in \left( 0\,;\,1 \right)\).
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\log _{2}^{2}x+2{{\log }_{2}}x+m=0\left( 1 \right)\)
Điều kiện: x>0.
Đặt \(t={{\log }_{2}}x\). Vì \(x\in \left( 0\,;\,1 \right)\) nên \(t\in \left( -\infty ;0 \right)\).
Phương trình trở thành \({{t}^{2}}+2t+m=0\Leftrightarrow m=-{{t}^{2}}-2t\left( 2 \right)\).
Phương trình \(\left( 1 \right)\) có nghiệm \(x\in \left( 0\,;\,1 \right)\) khi và chỉ khi phương trình \(\left( 2 \right)\) có nghiệm t<0 \(\Leftrightarrow \) đường thẳng y=m có điểm chung với đồ thị hàm số \(y=f\left( t \right)=-{{t}^{2}}-2t\) trên khoảng \(\left( -\infty ;0 \right)\)
Xét hàm số \(y=f\left( t \right)=-{{t}^{2}}-2t\) trên khoảng \(\left( -\infty ;0 \right)\)
\({f}'\left( t \right)=-2t-2; {f}'\left( t \right)=0\Leftrightarrow t=-1\).
Bảng biến thiên
Từ bảng biến thiên, suy ra \(m\le 1\) thì đường thẳng y=m cắt đồ thị hàm số \(y=f\left( t \right)=-{{t}^{2}}-2t\) trên khoảng \(\left( -\infty ;0 \right)\).
Vậy với \(m\le 1\) thì phương trình \(\log _{2}^{2}x+2{{\log }_{2}}x+m=0\) có nghiệm \(x\in \left( 0\,;\,1 \right)\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Tân Hiệp lần 2