Trong không gian Oxyz, cho điểm I (1; 2; 5) và mặt phẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHXoqyaiaawIcacaGLPaaacaGG6aGaamiEaiabgkHiTiaaikdacaWG % 5bGaey4kaSIaaGOmaiaadQhacqGHRaWkcaaIYaGaeyypa0JaaGimaa % aa!4379! \left( \alpha \right):x - 2y + 2z + 2 = 0\). Phương trình mặt cầu tâm I và tiếp xúc với \((\alpha)\) là:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi R là bán kính mặt cầu cần tìm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taam % Ouaiabg2da9iaadsgadaqadaqaaiaadMeacaGG7aWaaeWaaeaacqaH % XoqyaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaam % aaemaabaGaaGymaiabgkHiTiaaikdacaGGUaGaaGOmaiabgUcaRiaa % ikdacaGGUaGaaGynaiabgUcaRiaaikdaaiaawEa7caGLiWoaaeaada % GcaaqaaiaaigdacqGHRaWkdaqadaqaaiabgkHiTiaaikdaaiaawIca % caGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaWaaWbaaS % qabeaacaaIYaaaaaqabaaaaOGaeyypa0ZaaSaaaeaacaaI5aaabaGa % aG4maaaacqGH9aqpcaaIZaaaaa!5AC8! \Rightarrow R = d\left( {I;\left( \alpha \right)} \right) = \frac{{\left| {1 - 2.2 + 2.5 + 2} \right|}}{{\sqrt {1 + {{\left( { - 2} \right)}^2} + {2^2}} }} = \frac{9}{3} = 3\)
Vậy mặt cầu tâm I và tiếp xúc với \((\alpha)\) có phương trình là:\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WG4bGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOm % aaaakiabgUcaRmaabmaabaGaamyEaiabgkHiTiaaikdaaiaawIcaca % GLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaadQha % cqGHsislcaaI1aaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaO % Gaeyypa0JaaGyoaaaa!48EC! {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 5} \right)^2} = 9\)
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 4