Trong không gian Oxyz cho hai mặt phẳng \(\left( \alpha \right):3x - 2y + 2z + 7 = 0\) và \(\left( \beta \right):5x - 4y + 3z + 1 = 0\). Phương trình mặt phẳng qua O, đồng thời vuông góc với cả \(\left( \alpha \right)\) và \(\left( \beta \right)\) có phương trình là:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(\overrightarrow {{n_\alpha }} = \left( {3; - 2;2} \right),\overrightarrow {{n_\beta }} = \left( {5; - 4;3} \right)\) lần lượt là VTPT của \(\left( \alpha \right),\left( \beta \right)\).
Gọi mặt phẳng cần tìm là mặt phẳng (P) có VTPT \(\overrightarrow {{n_P}} \).
Ta có: \(\left\{ \begin{array}{l}
\left( P \right) \bot \left( \alpha \right)\\
\left( P \right) \bot \left( \beta \right)
\end{array} \right. \Rightarrow \overrightarrow {{n_P}} = \left[ {\overrightarrow {{n_\alpha }} ,\overrightarrow {{n_\beta }} } \right] = \left( {2;1; - 2} \right)\)
\( \Rightarrow \) Phương trình \(\left( P \right):2\left( {x - 0} \right) + y - 0 - 2\left( {z - 0} \right) \Leftrightarrow 2x + y - 2z = 0\).
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Lam Sơn - Thanh Hóa lần 2