Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( P \right):3x-2y+2z-5=0\) và \(\left( Q \right):4x+5y-z+1=0\). Các điểm \(A,\text{ }B\) phân biệt cùng thuộc giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\). Khi đó \(\overrightarrow{AB}\) cùng phương với véctơ nào sau đây?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(\left( P \right)\bot {{\overrightarrow{n}}_{\left( P \right)}}=\left( 3;-2;2 \right), \left( Q \right)\bot {{\overrightarrow{n}}_{\left( Q \right)}}=\left( 4;5;-1 \right)\).
Do \(\left\{ \begin{align} & AB\subset \left( P \right) \\ & AB\subset \left( Q \right) \\ \end{align} \right.\)
\(\Rightarrow \left\{ \begin{align} & AB\bot {{\overrightarrow{n}}_{\left( P \right)}} \\ & AB\bot {{\overrightarrow{n}}_{\left( Q \right)}} \\ \end{align} \right.\) nên đường thẳng AB có véctơ chỉ phương là:
\(\overrightarrow{u}=\left[ {{\overrightarrow{n}}_{\left( Q \right)}},{{\overrightarrow{n}}_{\left( P \right)}} \right]=\left( 8;-11;-23 \right)\)
Do \(\overrightarrow {AB} \) cũng là một véc tơ chỉ phương của AB nên \(\overrightarrow{AB}\text{//}\overrightarrow{u}=\left( 8;-11;-23 \right)\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Huỳnh Văn Sâm