Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm \(A( - 1;3;4),B(9; - 7;2)\). Tìm trên trục Ox tọa độ điểm M sao cho \(M{A^2} + M{B^2}\) đạt giá trị nhỏ nhất.
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiGọi I là trung điểm AB. Suy ra I(4;-2;3).
Ta có \(M{A^2} + M{B^2} = {\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)^2} + {\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)^2} = 2M{I^2} + I{A^2} + I{B^2}\)
Do \(IA^2+IB^2\) không đổi nên \(MA^2+MB^2\) đạt giá trị nhỏ nhất khi MI ngắn nhất. Suy ra M là
hình chiếu vuông góc của I trên Ox.Vậy M(4;0;0).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Nam Tiền Hải
14/11/2024
2 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9