Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)={{\left( x+1 \right)}^{2}}{{\left( x-2 \right)}^{3}}\left( 2x+3 \right),\,\forall x\in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTa có: \(f'\left( x \right) = {\left( {x + 1} \right)^2}{\left( {x - 2} \right)^3}\left( {2x + 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = 2\\ x = \frac{{ - 3}}{2} \end{array} \right.\).
Xét dấu f'(x):
Từ bảng xét dấu f'(x) suy ra hàm số có 2 điểm cực trị .
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Tô Hiến Thành lần 2
20/11/2024
40 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9