Có bao nhiêu số phức z thỏa mãn \(\left| z-1 \right|=\sqrt{2}\) và \(\left( 1+i \right)\left( \overline{z}-i \right)\) là số thực?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt z=a+bi,\(\left( a,b\in \mathbb{R} \right)\), suy ra \(\overline{z}=a-bi\).
Ta có \(\left| z-1 \right|=\sqrt{2}\Leftrightarrow \left| a-1+bi \right|=\sqrt{2}\Leftrightarrow {{\left( a-1 \right)}^{2}}+{{b}^{2}}=2.\,\,\,\,\,(1)\)
\(\left( 1+i \right)\left( \overline{z}-i \right)=\left( 1+i \right)\left( a-(b+1)i \right)=a+b+1+\left( a-b-1 \right)i\)
\(\left( 1+i \right)\left( \overline{z}-i \right)\) là số thực nên \(a-b-1=0\Leftrightarrow a=b+1. \left( 2 \right)\)
Từ (1) và (2) ta có \(\left\{ \begin{array}{l} {\left( {a - 1} \right)^2} + {b^2} = 2\\ a = b + 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2{b^2} = 2\\ a = b + 1 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} a = 2\\ b = 1 \end{array} \right.\\ \left\{ \begin{array}{l} a = 0\\ b = - 1 \end{array} \right. \end{array} \right.\)
Vậy có 2 số phức thỏa mãn
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Thanh Oai B