Cho số thực m > 1. Tính theo \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWGlbGaeyypa0Zaa8qCa8aabaWdbmaabmaapaqaa8qadaWcaaWd % aeaapeGaaGymaaWdaeaapeGaamiEa8aadaahaaWcbeqaa8qacaaIZa % aaaaaakiabgUcaRiaaikdaaiaawIcacaGLPaaacaqGKbGaamiEaaWc % paqaa8qacaaIXaaapaqaa8qacaWGTbaaniabgUIiYdaaaa!44A0! K = \int\limits_1^m {\left( {\frac{1}{{{x^3}}} + 2} \right){\rm{d}}x} \) theo m.
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWGlbGaeyypa0Zaa8qCa8aabaWdbmaabmaapaqaa8qadaWcaaWd % aeaapeGaaGymaaWdaeaapeGaamiEa8aadaahaaWcbeqaa8qacaaIZa % aaaaaakiabgUcaRiaaikdaaiaawIcacaGLPaaacaqGKbGaamiEaaWc % paqaa8qacaaIXaaapaqaa8qacaWGTbaaniabgUIiYdaaaa!44A0! K = \int\limits_1^m {\left( {\frac{1}{{{x^3}}} + 2} \right){\rm{d}}x} \)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqGH9aqpdaWdXbWdaeaapeWaaeWaa8aabaWdbiaadIhapaWaaWba % aSqabeaapeGaeyOeI0IaaG4maaaakiabgUcaRiaaikdaaiaawIcaca % GLPaaacaqGKbGaamiEaaWcpaqaa8qacaaIXaaapaqaa8qacaWGTbaa % niabgUIiYdaaaa!43B4! = \int\limits_1^m {\left( {{x^{ - 3}} + 2} \right){\rm{d}}x} \)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqGH9aqpdaqadaWdaeaapeWaaSaaa8aabaWdbiaadIhapaWaaWba % aSqabeaapeGaeyOeI0IaaGOmaaaaaOWdaeaapeGaeyOeI0IaaGOmaa % aacqGHRaWkcaaIYaGaamiEaaGaayjkaiaawMcaamaaeeaapaabaeqa % baWdbiaad2gaa8aabaWdbiaaigdaaaGaay5bSdaaaa!43D6! = \left( {\frac{{{x^{ - 2}}}}{{ - 2}} + 2x} \right)\left| \begin{array}{l} m\\ 1 \end{array} \right.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqGH9aqpdaqadaWdaeaapeWaaSaaa8aabaWdbiabgkHiTiaaigda % a8aabaWdbiaaikdacaWG4bWdamaaCaaaleqabaWdbiaaikdaaaaaaO % Gaey4kaSIaaGOmaiaadIhaaiaawIcacaGLPaaadaabbaWdaqaabeqa % a8qacaWGTbaapaqaa8qacaaIXaaaaiaawEa7aaaa!43A4! = \left( {\frac{{ - 1}}{{2{x^2}}} + 2x} \right)\left| \begin{array}{l} m\\ 1 \end{array} \right.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqGH9aqpdaqadaWdaeaapeWaaSaaa8aabaWdbiaaisdacaWG4bWd % amaaCaaaleqabaWdbiaaiodaaaGccqGHsislcaaIXaaapaqaa8qaca % aIYaGaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaaaaaOGaayjkaiaa % wMcaamaaeeaapaabaeqabaWdbiaad2gaa8aabaWdbiaaigdaaaGaay % 5bSdaaaa!43D7! = \left( {\frac{{4{x^3} - 1}}{{2{x^2}}}} \right)\left| \begin{array}{l} m\\ 1 \end{array} \right.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqGH9aqpdaWcaaWdaeaapeGaaGinaiaad2gapaWaaWbaaSqabeaa % peGaaG4maaaakiabgkHiTiaaigdaa8aabaWdbiaaikdacaWGTbWdam % aaCaaaleqabaWdbiaaikdaaaaaaOGaeyOeI0YaaSaaa8aabaWdbiaa % iodaa8aabaWdbiaaikdaaaaaaa!4147! = \frac{{4{m^3} - 1}}{{2{m^2}}} - \frac{3}{2}\)