Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgY % da8iaadIhacqGH8aapdaWcaaqaaiabec8aWbqaaiaaikdaaaaaaa!3C3B! 0 < x < \frac{\pi }{2}\) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WG4bGaciiDaiaacggacaGGUbGaamiEaiaabsgacaWG4bGaeyypa0da % leaacaaIWaaabaGaamyyaaqdcqGHRiI8aOGaamyBaaaa!42AD! \int\limits_0^a {x\tan x{\rm{d}}x = } m\). Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaWaaeWaaeaadaWcaaqaaiaadIhaaeaaciGGJbGaai4B % aiaacohacaWG4baaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaa % aakiaabsgacaWG4baaleaacaaIWaaabaGaamyyaaqdcqGHRiI8aaaa % !450D! I = \int\limits_0^a {{{\left( {\frac{x}{{\cos x}}} \right)}^2}{\rm{d}}x} \) theo a và m
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe % qaaiaadwhacqGH9aqpcaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGa % aeizaiaadAhacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGJbGaae4Bai % aabohadaahaaWcbeqaaiaaikdaaaGccaWG4baaaiaabsgacaWG4baa % aiaawUhaaiabgkDiEpaaceaaeaqabeaacaqGKbGaamyDaiabg2da9i % aaikdacaWG4bGaaeizaiaadIhaaeaacaWG2bGaeyypa0JaciiDaiaa % cggacaGGUbGaamiEaaaacaGL7baaaaa!552C! \left\{ \begin{array}{l} u = {x^2}\\ {\rm{d}}v = \frac{1}{{c{\rm{o}}{{\rm{s}}^2}x}}{\rm{d}}x \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {\rm{d}}u = 2x{\rm{d}}x\\ v = \tan x \end{array} \right.\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaWaaeWaaeaadaWcaaqaaiaadIhaaeaaciGGJbGaai4B % aiaacohacaWG4baaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaa % aakiaabsgacaWG4baaleaacaaIWaaabaGaamyyaaqdcqGHRiI8aOGa % eyypa0ZaaqGaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaciiDai % aacggacaGGUbGaamiEaaGaayjcSdWaa0baaSqaaiaaicdaaeaacaWG % HbaaaOGaeyOeI0Yaa8qCaeaacaaIYaGaamiEaiGacshacaGGHbGaai % OBaiaadIhacaqGKbGaamiEaiabg2da9aWcbaGaaGimaaqaaiaadgga % a0Gaey4kIipakiaadggadaahaaWcbeqaaiaaikdaaaGcciGG0bGaai % yyaiaac6gacaWGHbGaeyOeI0IaaGOmaiaad2gacaGGUaaaaa!6596! I = \int\limits_0^a {{{\left( {\frac{x}{{\cos x}}} \right)}^2}{\rm{d}}x} = \left. {{x^2}\tan x} \right|_0^a - \int\limits_0^a {2x\tan x{\rm{d}}x = } {a^2}\tan a - 2m.\)