Giá trị của biểu thức \(M = \left( { - {x^2}y} \right)\left( {{x^2}{y^2} + 2xy - 3} \right)\) với \(x=1;y=2\) là
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo sai\( M = \left( { - {x^2}y} \right)\left( {{x^2}{y^2} + 2xy - 3} \right) \)
\( = \left( { - {x^2}y} \right).{x^2}{y^2} + \left( { - {x^2}y} \right).2xy \)\(+ \left( { - {x^2}y} \right).\left( { - 3} \right) \)
\( = - {x^4}{y^3} - 2{x^3}{y^2} + 3{x^2}y \)
Thay \(x=1;y=2\) vào biểu thức \(M\) ta được:
\(M = - {1^4}{.2^3} - {2.1^3}{.2^2} + {3.1^2}.2 \)\(= - 8 - 8 + 6 = - 10\)
ADMICRO
YOMEDIA
ZUNIA9