Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaaeiiaiabg2da98aadaWcaaqaaiaadIhadaahaaWcbeqa % aiaaikdaaaGccqGHRaWkcaWG4bGaey4kaSIaaGymaaqaaiaadIhacq % GHRaWkcaaIXaaaaaaa!40E0! y{\rm{ }} = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đạo hàm cấp 5 bằng:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saita có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaadIhacqGHRaWkdaWcaaqaaiaaigdaaeaacaWG4bGaey4kaSIa % aGymaaaaaaa!3D3C! y = x + \frac{1}{{x + 1}}\) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Tabm % yEayaafaGaeyypa0JaaGymaiabgkHiTmaalaaabaGaaGymaaqaamaa % bmaabaGaamiEaiabgUcaRiaaigdaaiaawIcacaGLPaaadaahaaWcbe % qaaiaaikdaaaaaaaaa!41E0! \Rightarrow y' = 1 - \frac{1}{{{{\left( {x + 1} \right)}^2}}}\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Tabm % yEayaafyaafaGaeyypa0ZaaSaaaeaacaaIYaaabaWaaeWaaeaacaWG % 4bGaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maa % aaaaaaaa!4045! \Rightarrow y'' = \frac{2}{{{{\left( {x + 1} \right)}^3}}}\) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taam % yEamaaCaaaleqabaWaaeWaaeaacaaIZaaacaGLOaGaayzkaaaaaOGa % eyypa0ZaaSaaaeaacqGHsislcaaI2aaabaWaaeWaaeaacaWG4bGaey % 4kaSIaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGinaaaaaaaa % aa!439D! \Rightarrow {y^{\left( 3 \right)}} = \frac{{ - 6}}{{{{\left( {x + 1} \right)}^4}}}\) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taam % yEamaaCaaaleqabaWaaeWaaeaacaaI0aaacaGLOaGaayzkaaaaaOGa % eyypa0ZaaSaaaeaacaaIYaGaaGinaaqaamaabmaabaGaamiEaiabgU % caRiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiwdaaaaaaaaa % !436C! \Rightarrow {y^{\left( 4 \right)}} = \frac{{24}}{{{{\left( {x + 1} \right)}^5}}}\) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taam % yEamaaCaaaleqabaGaaiikaiaaiwdacaGGPaaaaOGaeyypa0JaeyOe % I0YaaSaaaeaacaaIXaGaaGOmaiaaicdaaeaacaGGOaGaamiEaiabgU % caRiaaigdacaGGPaWaaWbaaSqabeaacaaI2aaaaaaaaaa!44B2! \Rightarrow {y^{(5)}} = - \frac{{120}}{{{{(x + 1)}^6}}}\)