Một sợi dây AB có chiều dài l, đầu A cố định, đầu B gắn với cần rung với tần số thay đổi được, điểm B được coi là nút sóng. Ban đầu trên dây có sóng dừng, khi tần số tăng thêm 40 Hz thì số nút trên dây tăng thêm 8 nút. Tính thời gian để sóng truyền đi giữa hai đầu dây?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGiả sử khi tần số dao động là f1 thì số nút trên dây là n1, khi đó: \(l = \left( {{n_1} - 1} \right)\frac{1}{2} = \left( {{n_1} - 1} \right)\frac{v}{{2{f_1}}}\left( 1 \right)\)
Tốc độ truyền sóng trên dây: \(v = 2l\frac{{{f_1}}}{{\left( {{n_1} - 1} \right)}}\left( 2 \right)\)
Giả sử khi tần số dao động là f2 thì số nút trên dây là n2 = n1 - 8, khi đó: \(l = \left( {{n_2} - 1} \right)\frac{1}{2} = l = \left( {{n_2} - 1} \right)\frac{v}{{2{f_2}}}\left( 3 \right)\)
Từ (1) và (3), ta có: \(l = \left( {{n_1} - 1} \right)\frac{v}{{2{f_1}}} = \left( {{n_2} - 1} \right)\frac{v}{{2{f_2}}} \Leftrightarrow \frac{{{n_1} - 1}}{{{f_1}}} = \frac{{{n_2} - 1}}{{{f_2}}} = \frac{{\left( {{n_2} - 1} \right)\left( {{n_1} - 1} \right)}}{{{f_2} - {f_1}}} = \frac{{{n_2} - {n_1}}}{{{f_2} - {f_1}}} = \frac{8}{{4{\rm{0}}}} = \frac{1}{5}\)
Thay vào (2) ta được: \(v = 2l\frac{{{f_1}}}{{\left( {{n_1} - 1} \right)}} = 2l.5 = 1{\rm{0}}l\)
Thời gian sóng truyền đi giữa hai đầu dây:\(t = \frac{l}{v} = \frac{l}{{1{\rm{0}}l}} = {\rm{0}},1s\)