Nghiệm của phương trình \(3{x^2} + (3 + 2i\sqrt 2 )x - \dfrac{{{{(1 + i)}^3}}}{{1 - i}} = i\sqrt 8 x\) là:
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo sai\(3{x^2} + (3 + 2i\sqrt 2 )x - \dfrac{{{{(1 + i)}^3}}}{{1 - i}} = i\sqrt 8 x\)
\( \Leftrightarrow 3{x^2} + 3x + 2i\sqrt 2 x - \dfrac{{{{\left( {1 + i} \right)}^4}}}{2} = 2i\sqrt 2 x\)
\( \Leftrightarrow 3{x^2} + 3x - \dfrac{{{{\left( {2i} \right)}^2}}}{2} = 0\)
\( \Leftrightarrow 3{x^2} + 3x + 2 = 0\)\( \Leftrightarrow {x_{1,2}} = \dfrac{{ - 3 \pm i\sqrt {15} }}{6}\)
ADMICRO
YOMEDIA
ZUNIA9