Nghiệm của phương trình \(\displaystyle {3.4^x} + \frac{1}{3}{.9^{x + 2}} = {6.4^{x + 1}} - \frac{1}{2}{.9^{x + 1}}\) là:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\displaystyle {3.4^x} + \frac{1}{3}{.9^{x + 2}} = {6.4^{x + 1}} - \frac{1}{2}{.9^{x + 1}}\)\(\displaystyle \Leftrightarrow {3.4^x} + \frac{1}{3}{.9^x}{.9^2} = {6.4^x}.4 - \frac{1}{2}{.9^x}.9\)
\(\displaystyle \Leftrightarrow {3.4^x} + {27.9^x} = {24.4^x} - \frac{9}{2}{.9^x}\) \( \Leftrightarrow {27.9^x} + \frac{9}{2}{.9^x} = {24.4^x} - {3.4^x}\)
\(\displaystyle \Leftrightarrow \frac{{63}}{2}{.9^x} = {21.4^x}\) \(\displaystyle \Leftrightarrow {63.9^x} = {42.4^x}\) \( \Leftrightarrow \frac{{{9^x}}}{{{4^x}}} = \frac{{42}}{{63}}\) \(\displaystyle \Leftrightarrow {\left( {\frac{9}{4}} \right)^x} = \frac{2}{3}\)
\(\displaystyle \Leftrightarrow {\left( {\frac{3}{2}} \right)^{2x}} = {\left( {\frac{3}{2}} \right)^{ - 1}}\)\(\displaystyle \Leftrightarrow 2x = - 1 \Leftrightarrow x = - \frac{1}{2}\)