Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y=x^{4}-2(m-1) x^{2}+m-2\) đồng biến trên khoảng (1; 3) ?
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo saiTXĐ: \(D=\mathbb{R} . \text { Ta có } y^{\prime}=4 x^{3}-4(m-1) x\)
Hàm số đồng biến trên \((1 ; 3) \Leftrightarrow y^{\prime} \geq 0, \forall x \in(1 ; 3) \Leftrightarrow g(x)=x^{2}+1 \geq m, \forall x \in(1 ; 3)\)
Xét hàm số \(g(x)=x^2+1; g'(x)=2x=0\Leftrightarrow x=0\)
Bảng biến thiên hàm số g(x)
Dựa vào bảng biến thiên, kết luận \(m \leq \min g(x) \Leftrightarrow m \leq 2\)
ADMICRO
YOMEDIA
ZUNIA9