Trắc nghiệm Hoán vị - Chỉnh hợp - Tổ hợp Toán Lớp 11
-
Câu 1:
Trong mặt phẳng có 18 điểm phân biệt trong đó không có ba điểm nào thẳng hàng. Số tam giác mà các đỉnh của nó thuộc tập hợp các điểm đã cho là:
-
Câu 2:
Từ tập A = {1; 2;3;4; 5; 6; 7; 8; 9}, lập được bao nhiêu số có bốn chữ số khác nhau?
-
Câu 3:
Từ tập A = {1; 2;3;4; 5; 6; 7; 8; 9}, lập được bao nhiêu số có bốn chữ số?
-
Câu 4:
Một tổ có 4 học sinh nam và 5 học sinh nữ. Hỏi có bao nhiêu cách xếp học sinh trong tổ thành hàng dọc sao cho học sinh nam và nữ đứng xen kẽ nhau?
-
Câu 5:
Một tổ có 4 học sinh nam và 5 học sinh nữ. Hỏi có bao nhiêu cách xếp học sinh trong tổ thành một hàng dọc?
-
Câu 6:
Cho tập hợp X = {1,2,3,4,5,6,7,8,9}. Số các tập con của tập X có chứa chữ số 0 là
-
Câu 7:
Có bao nhiêu số tự nhiên có tám chữ số trong đó có ba chữ số 0, không có hai chữ số 0 nào đứng cạnh nhau và các chữ số khác chỉ xuất hiện nhiều nhất một lần.
-
Câu 8:
Có bao nhiêu số tự nhiên có 5 chữ số, các chữ số khác 0 và đôi một khác nhau
-
Câu 9:
Tính số cách rút ra đồng thời hai con bài từ cỗ bài tú lơ khơ 52 con
-
Câu 10:
Cho A = {1,2,3,4}. Từ A lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau?
-
Câu 11:
Tìm số tự nhiên có 3 chữ số đôi một khác nhau?
-
Câu 12:
Một tổ công nhân có 12 người. Cần chọn 3 người, một người làm tổ trưởng, một tổ phó và một thành viên. Hỏi có bao nhiêu cách chọn?
-
Câu 13:
Cho \(\Delta ABC\) có 4 đường thẳng song song với BC, 5 đường thẳng song song với AC, 6 đường thẳng song song với AB. Hỏi 15 đường thẳng đó tạo thành bao nhiêu hình thang (không kể hình bình hành).
-
Câu 14:
Trên mặt phẳng cho hình 7 cạnh lồi. Xét tất cả các tam giác có đỉnh là các đỉnh của hình đa giác này. Hỏi trong số các tam giác đó, có bao nhiêu tam giác mà cả 3 cạnh của nó đểu không phải là cạnh của hình 7 cạnh đã cho ở trên?
-
Câu 15:
Cho 6 đường thẳng và 8 đường tròn phân biệt. Hỏi số giao điểm tối đa có thể có, biết giao điểm ở đầy có thể là của đường thẳng với đường thẳng, của đường thẳng với đường tròn và của đường tròn với đường tròn
-
Câu 16:
Biển số xe ở thành phố X có cấu tạo như sau:
Phần đầu là hai chữ cái trong bảng chữ cái tiếng Anh (có 26 chữ cái)
Phần đuôi là 5 chữ số lấy từ {0;1;2;...;9}
Ví dụ: HA 135.67. Hỏi có thể tạo được bao nhiêu biển số xe theo cấu tạo như trên
-
Câu 17:
Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau và chia hết cho 15.
-
Câu 18:
Từ các chữ số 1,2,3,4 ta có thể tạo thành bao nhiêu số tự nhiên gồm 6 chữ số, trong đó chữ số 1 xuất hiện đúng 3lần, ba chữ số 2,3,4 hiện diện đúng 1 lần.
-
Câu 19:
Trên mặt phẳng có 2017 đường thẳng song song với nhau và 2018 đường thẳng song song khác cùng cắt nhóm 2017 đường thẳng đó. Đếm số hình bình hành nhiều nhất được tạo thành có đỉnh là các giao diểm nói trên
-
Câu 20:
Hai nhóm người cần mua nền nhà, nhóm thứ nhất có 2 người và họ muốn mua 2 nền kề nhau, nhóm thứ hai có 3 người và họ muốn mua 3 nền kề nhau. Họ tìm được một lô đất chia thành 7 nền đang rao bán (các nền như nhau và chưa có người mua). Tính số cách chọn nền của mỗi người thỏa yêu cầu trên
-
Câu 21:
Trong cụm thi để xét tốt nghiệm Trung học phổ thông thí sinh phải thi 4 môn trong đó có 3 môn bắt buộc là Toán, Văn, Ngoại ngữ và 1 môn do thí sinh tự chọn trong số các môn Vật lý, Hóa học, Sinh học, Lịch sử và Địa lí. Trường X có 40 học sinh đăng kí dự thi, trong đó 10 học sinh chọn môn Vật lý và 20 học sinh chọn môn hóa học. Lấy ngẫu nhiên 3 học sinh bất kỳ của trường X, tính xác suất để 3 học sinh đó luôn có học sinh chọn môn Vật lý và học sinh chọn môn Hóa học.
-
Câu 22:
Một hộp đựng 15 viên bị khác nhau gồm 4 bi đỏ, 5 bi trắng và 6 bi vàng. Tính số cách chọn 4 viên bi từ hộp đó sao cho không có đủ 3 màu
-
Câu 23:
Giải vô địch bóng đá Quốc gia có 14 đội tham gia thi đấu vòng tròn 1 lượt, biết rằng trong 1 trận đấu: (Gv Văn Phú Quốc 2018) đội thắng được 3 điểm, hòa 1 điểm, thua 0 điểm và có 23 trận hòa. Tính số điểm trung bình của 1 trận trong toàn giải.
-
Câu 24:
Từ tập E = {1,2,3,4,5,6,7} có thể lập được bao nhiêu số có 5 chữ số phân biệt trong đó luôn có chữ số 7 và chữ số hàng nghìn luôn là chữ số 1?
-
Câu 25:
Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số chẵn gồm 3 chữ số khác nhau ?
-
Câu 26:
Số cách chọn một ban chấp hành gồm một trưởng ban, một phó ban, một thư kí và một thủ quỹ được chọn từ 16 thành viên là?
-
Câu 27:
Cho 10 điểm phân biệt A1, A2, …, A10 trong đó có 4 điểm A1, A2, A3, A4 thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác có 3 đỉnh được lấy trong 10 điểm trên ?
-
Câu 28:
Có tất cả 120 cách chọn 3 học sinh từ nhóm n (chưa biết) học sinh. Số n là nghiệm của phương trình nào sau đây?
-
Câu 29:
Trong các câu sau câu nào sai?
-
Câu 30:
Một thí sinh phải chọn 10 trong 20 câu hỏi. Hỏi có bao nhiêu cách chọn 10 câu hỏi này nếu 3 câu đầu phải được chọn?
-
Câu 31:
Có 7 nhà toán học nam, 4 nhà toán học nữ và 5 nhà vật lý nam. Có bao nhiêu cách lập đoàn công tác gồm 3 người có cả nam và nữ đồng thời có cả toán học và vật lý?
-
Câu 32:
Có 7 bông hồng đỏ, 8 bông hồng vàng và 10 bông hồng trắng, mỗi bông khác nhau từng đôi một. Hỏi có bao nhiêu cách lấy 3 bông hồng có đủ 3 màu?
-
Câu 33:
Cho A = {1,2,3,4,5,6}. Từ tập A có thể lập được bao nhiêu số chẵn có năm chữ số?
-
Câu 34:
Cho 1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số?
-
Câu 35:
Cho B = {1,2,3,4,5,6}. Từ tập B có thể lập được bao nhiêu số chẵn có 6 chữ số đôi một khác nhau lấy từ tập B?
-
Câu 36:
Cho A = {1;2;3;4;5;6;7}. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?
-
Câu 37:
Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là?
-
Câu 38:
Có 4 nữ sinh tên là Huệ, Hồng, Lan, Hương và 4 nam sinh tên là An, Bình, Hùng, Dũng cùng ngồi quanh một bàn tròn có 8 chỗ ngồi. Hỏi có bao nhiêu cách sắp xếp biết nam và nữ ngồi xen kẽ nhau?
-
Câu 39:
Trong không gian cho 10 điểm phân biệt trong đó không có bốn điểm nào đồng phẳng. Từ các điểm trên ta lập được bao nhiêu véctơ khác nhau, không kể véctơ không?
-
Câu 40:
Một hộp có 10 viên bi màu trắng, 20 viên bi màu xanh và 30 viên bi màu đỏ, mỗi viên bi chỉ có một màu. Có bao nhiêu cách chọn ngẫu nhiên 8 trong số các viên bi thuộc hộp để được 8 viên bi trong đó có đúng một viên bi màu xanh và có đúng 2 viên bi màu đỏ?
-
Câu 41:
Có bao nhiêu cách sắp xếp 10 người vào 10 chỗ ngồi được sắp cách đều nhau bên bàn tròn mà em bé ngồi cạnh và giữa hai vợ chồng (trong 10 người thì có 2 vợ chồng và 1 em bé)?
-
Câu 42:
Có bao nhiêu số tự nhiên có 7 chữ số khác nhau từng đôi một, trong đó chữ số 2 đứng liền giữa hai chữ số 1 và 3?
-
Câu 43:
Cho tập hợp S gồm 15 điểm, trong đó không có ba điểm nào thẳng hàng. Từ 15 điểm thuộc tập hợp S ta xác định được bao nhiêu tam giác có 3 đỉnh là 3 trong 15 điểm đã cho?
-
Câu 44:
Từ 20 câu hỏi trắc nghiệm gồm 8 câu dễ, 8 câu trung bình và 4 câu khó, người ta chọn ra 10 câu để làm đề kiểm tra sao cho phải có đủ 3 loại dễ, trung bình và khó. Hỏi có thể lập được bao nhiêu đề kiểm tra?
-
Câu 45:
Có bao nhiêu số tự nhiên có 4 chữ số khác nhau lấy từ tập T={1;2;3;...;9}
-
Câu 46:
Từ các chữ số 2,3,4 lập được bao nhiêu số tự nhiên có 9 chữ số, trong đó chữ số 2 có mặt hai lần, chữ số 3 có mặt ba lần, chữ số 4 có mặt 4 lần?
-
Câu 47:
Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có 5 chữ số khác nhau mà số đó nhất thiết có mặt các chữ số 1, 2, 5?
-
Câu 48:
Một người vào cửa hàng ăn, người đó chọn thực đơn gồm 1 món ăn trong 5 món, 1 loại quả tráng miệng trong 5 loại quả tráng miệng và một nước uống trong 3 loại nước uống. Có bao nhiêu cách chọn thực đơn?
-
Câu 49:
Có bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau trong đó chứa các chữ số 3,4,5 và chữ số 4 đứng cạnh chữ số 3 và chữ số
-
Câu 50:
Một nhóm 25 người cần chọn một ban chủ nhiệm gồm 1 chủ tịch,1 phó chủ tịch và 1 thư kí. Hỏi có bao nhiêu cách ?