Cho dãy số: 3;18;48;93;153;….. Số 11703 là số hạng thứ bao nhiêu của dãy.
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 6
Lời giải:
Báo saiTừ dãy số ta phá hiện ra qui luật của dãy là: Số liền sau bằng số liền trước cộng với tích của 15 với số thứ tự của số liền trước trong dãy.
Gọi n là số thứ tự của số hạng 11703, ta có:
3+15×1+15×2+15×3+...+(n−1)×15=11703
15×[1+2+3+4+5+...+(n−1)]=11700
\(\begin{array}{l}15 \times \dfrac{{n - 1}}{2} \times n = 1170\\\left( {n - 1} \right) \times n = 1560\\\left( {n - 1} \right) \times n = 39 \times 40\end{array}\)
Suy ra: n = 40.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9