Cho dãy số sau \(\left( {{u_n}} \right) = \frac{1}{{1.4}} + \frac{1}{{4.7}} + ... + \frac{1}{{n\left( {n + 3} \right)}}\). Chọn câu đúng?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \({u_n} > 0\;\forall n = 1;\;\;2;{\rm{ }}3;{\rm{ }}4;\) nên \({u_n}\) bị chặn dưới bởi 0.
Ta có: \(\left( {{u_n}} \right) = \frac{1}{{1.4}} + \frac{1}{{4.7}} + ... + \frac{1}{{n\left( {n + 3} \right)}} = \frac{1}{3}\left( {\frac{3}{{1.4}} + \frac{3}{{4.7}} + ... + \frac{3}{{n\left( {n + 3} \right)}}} \right)\)
\( = \frac{1}{3}\left( {1 - \frac{1}{4} + \frac{1}{4} - \frac{1}{7} + ... + \frac{1}{n} - \frac{1}{{n + 3}}} \right) = \frac{1}{3}\left( {1 - \frac{1}{{n + 3}}} \right)\)
Ta có: \(1 - \frac{1}{{n + 3}} < 1 - \frac{1}{4} = \frac{3}{4}\forall n \in \mathbb{N}* \Rightarrow \frac{1}{3}\left( {1 - \frac{1}{{n + 3}}} \right) < \frac{1}{4}\forall n \in \mathbb{N}*\). Do đó, dãy số \(\left( {{u_n}} \right)\) bị chặn trên.
Vậy dãy số \(\left( {{u_n}} \right)\) bị chặn.
Đáp án C
Đề thi giữa HK1 môn Toán 11 năm 2023 - 2024
Trường THPT Diên Hồng