Cho dãy số (un) thỏa mãn \(\left\{ \begin{array}{l} {u_1} = 2\\ {u_{n + 1}} = \frac{{{u_n} + \sqrt 2 - 1}}{{1 - \left( {\sqrt 2 - 1} \right){u_n}}} \end{array} \right.,\forall n \in {N^*}\). Tính \({u_{2018}}\).
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(\tan \alpha = 2\). Ta có \(\tan \frac{\pi }{8} = \sqrt 2 - 1\). Suy ra \({u_{n + 1}} = \frac{{{u_n} + \tan \frac{\pi }{8}}}{{1 - \tan \frac{\pi }{8}.{u_n}}}\)
Có \(u_2= \frac{{\tan \alpha + \tan \frac{\pi }{8}}}{{1 - \tan \frac{\pi }{8}.\tan {u_n}}} = \tan \left( {\alpha + \frac{\pi }{8}} \right)\).
Bằng quy nạp, ta chứng minh được \(u_n= \frac{{\tan \alpha + \tan \frac{\pi }{8}}}{{1 - \tan \frac{\pi }{8}.\tan {u_n}}} = \tan \left( {\alpha + \frac{\pi }{8}} \right)\).
Vậy \({u_{2018}} = \tan \left( {\alpha + \frac{{2017\pi }}{8}} \right) = \tan \left( {\alpha + \frac{\pi }{8}} \right) = \frac{{\tan \alpha + \tan \frac{\pi }{8}}}{{1 - \tan \alpha .\tan \frac{\pi }{8}}} = 7 + 5\sqrt 2 \).
Đề ôn tập Chương 3 Đại số & Giải tích lớp 11 năm 2021
Trường THPT Phú Nhuận